A Guide to Glycols

Glycol-based solutions can give excellent burst protection across a wide range of cold temperatures. However, an appropriate expansion space for the solution and to the need for an inhibited glycol-based product such as DOWFROST*, Poly (ethylene) glycol is a condensation polymer of ethylene oxide and water. It is soluble in water and in many organic solvents.

Ethylene glycol (data page) - Wikipedia

Triethylene glycol may be used preferentially in applications requiring a higher boiling point, higher molecular weight, and lower water solubility. The hydroxyl groups on triethylene glycol undergo the usual alcohol chemistry giving a wide variety of possible derivatives.

Properties Of Aqueous Ethylene Glycol Solutions

Density, Viscosity, and Excess Properties for Aqueous Poly(ethylene glycol) Solutions from (298.15 to 323.15) K Article in Journal of Chemical & Engineering Data 53(11) · October 2008 with 663 Reads

Excess volumes (VE), viscosity deviation (Δη), excess refraction (ΔR), and surface excess (σE) of water + ethylene glycol are determined in aqueous solutions of water mole fractions from 0.1 to 0.9 at temperatures ranging from 298.15 K to 323.15 K. The properties have negative values and exhibit a minimum at the water-rich compositions.

Effects of hydration on the thermodynamic properties of poly(ethylene glycol) dimethyl ether 2000 and tri-potassium phosphate at different temperatures experiment and correlation

Preliminary results on the liquid-liquid and liquid-solid equilibria of the ternary aqueous system containing ethylene glycol (EG), triethylene glycol (TEG) and water have been determined over the entire composition range at a number of temperatures. The results are fitted to a Flory-Huggins equation, and the corresponding parameters are derived. All the properties have negative values and exhibit a minimum at the same water-cut ...

Effects of hydration on the thermodynamic properties of poly(ethylene glycol) dimethyl ether 2000 and tri-potassium phosphate at different temperatures experiment and correlation

Triethylene Glycol - Dow

Thermal properties of ethylene glycol aqueous solutions. Baudot A(1), Odagescu V. This work reports on the thermal properties of aqueous solutions of (90, 95, 100, 105, 110, 115, 130) mol% of this component measured by Differential Scanning Calorimetry. The glass forming tendency and the stability of the amorphous state are evaluated as a function ...

Thermal properties of ethylene glycol aqueous solutions. Baudot A(1), Odagescu V. This work reports on the thermal properties of aqueous solutions of (90, 95, 100, 105, 110, 115, 130) mol% of this component measured by Differential Scanning Calorimetry. The glass forming tendency and the stability of the amorphous state are evaluated as a function ...

Dow® 142 Surfynol® surfactant is a non-ionic surfactant developed by Dow Chemical Company. The Surfactant can be used in a wide variety of applications, such as antifreeze, cooling systems, and many others. Dow® 142 Surfynol® surfactant is a non-ionic surfactant developed by Dow Chemical Company. The Surfactant can be used in a wide variety of applications, such as antifreeze, cooling systems, and many others.

Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic compound with the formula (CH₂OH)₂. It is mainly used for making polyester fibers and for antifreeze formulations. It is an odorless, colorless, sweet-tasting, viscous liquid.

Ethylene glycol - Wikipedia

Thermodynamic Properties of Water + Ethylene Glycol at 283 K. It is an industrially important polymer; two unique solubility properties, developing in water and in propylene glycol, are the basis for water-in-water emulsions, or microemulsions of water or propylene glycol into oil. The water-in-water emulsions are prepared using the multiblock copolymers of ethylene oxide and propylene oxide, which are all insoluble in water.

Thermodynamic Properties of Water + Ethylene Glycol at 283 K. It is an industrially important polymer; two unique solubility properties, developing in water and in propylene glycol, are the basis for water-in-water emulsions, or microemulsions of water or propylene glycol into oil. The water-in-water emulsions are prepared using the multiblock copolymers of ethylene oxide and propylene oxide, which are all insoluble in water.


Volumetric Properties of Aqueous Solutions of Ethylene Glycols in the Temperature Range of 293.15–318.15 K Densities of aqueous solutions of ethylene glycol (EG), diethylene glycol (DEG) and triethylene glycol (TEG) were measured at temperatures from 293.15 K to 318.15 K and molalities ranging from 0.0488 to 0.5288 mol·kg⁻¹.

Volumetric Properties of Aqueous Solutions of Ethylene Glycols in the Temperature Range of 293.15–318.15 K Densities of aqueous solutions of ethylene glycol (EG), diethylene glycol (DEG) and triethylene glycol (TEG) were measured at temperatures from 293.15 K to 318.15 K and molalities ranging from 0.0488 to 0.5288 mol·kg⁻¹.

Viscosity of aqueous solutions of poly(ethylene glycol)s ...